ftComputing

ROBO Pro : Tutorial

Ulrich Miiller

Inhaltsverzeichnis

Tips & Tricks 3
Techniques 3
Blinker : Loops / Subs / Outputs 3
WechselBlinker : Loops / Subs 2 4
WechselBlinker : Loops / Subs 3 5
Bedienung : Panel elements 5
Analog : Storing to a List, Analog Display 6

Turm : Access to a List 7
Industry Robots 8
General 8
Usual Assigning of Motors / M-Outputs and Switches / I-Inputs 8
Working Area 8

The Tower only 9
NachHause : Moving until end switch bump 9
Home : Go Home using a Sub 9
DriveTo : A special Position 10
Greifer : Sub with two Entries, Show Position 11
Some Notices about the Library Position ES 12
Pos : Move to a single Position 12

PosX : Move to a single Position with "X-Axis" 13
Posinit : Go Home 13
Anzeige : Panel Elements 13

Pos XYZ : Simultaneous Move to Position X/Y/Z 14

Rob 3 /4 : List operated 15
iRobListe : Main 15

Play : Working with the Lists 16
Teachln for Rob 3/ 4 17
iRobTeach : The Main 17
Record : Storing the different Robot Positions 18
PosFree / Pos_Free : Move to a Position 19
Some Point you should be angry with 19

Copyright Ulrich Muller. Dokumentname : RoboProTT.doc. Druckdatum : 12.03.2005

ftComputing ROBO Pro : Tutorial Inhaltsverzeichnis - 2

Tips & Tricks

Techniques

Blinker : Loops / Subs / Outputs
E 3

s

3 _ 3
e S
M1 0 " O: +C e Binken . —w 06 gy
} L ' RED)
1s ¥ 15| & s &
i v 4
M1 g C‘I') O
= e
15 3| s & 1s X
- | |

Connected are one lamp to a M-Output or O-Output and ground respectively.

The left diagram level 1 is used, the others use level 3. With level 1 only the basic element
can be used, with level 2 in addition subprograms without parameters and with level 3 you
can use variable and the yellow data flow lines and many other elements. After a short
phase of learning you will mostly use level 3. We use level 3 in general, but it is possible to
use the basic elements in any mix, if convenient.

The programs above are variations of the same thing : blinking with one lamp.

1. Lamp on M1, 1 sec on, 1 sec off, running in an endless loop. Stopped by the appropriate
button of the IDE.

2. Lamp on M2, like (1.), but with elements of level 3 with special On an Off commands,
which send via data flow (yellow lines) messages to the motor output. Each special
motor output symbol should be used only once in a main or sub. Multiple use make
sense, if the wiring would be to complicated.

3. Lamp on O5 and ground, like (2.)

4. Lamp on 06, functional like (3.), but blinking is done in a sub. The Output to be used is
transfered as parameter.

ftComputing ROBO Pro : Tutorial Tips & Tricks - 3

WechselBlinker : Loops / Subs 2

If blinking is not the only purpose of a program, to
place blinking, loop included, in a subroutine.

l i In WBlinken (WechselBlinker : Alternative
S Blinking) two lamps (M1 / M2) are controlled with
Z=10 v level 1 commands.

' l The blinking loop is controlled by a level 1
M “ 7 counter loop command. It runs 10 times.
:) Therefore the loop counter is set to 1 entering the
left pin. On each further entry on the right pin it is
R/ incremented by 1 and compared to the max value
2 Iﬁ' S oft0, ’ P
. The time delay command has a fix delay value,
R the delay function was outplaced in a sub
4 PauseZ with a min delay of 0.1 secs. The
: parameter n gives WBIinken the number of
M1 gl repeats of that delays. WBIinken itself routes it to
l PauseZ.
M2 g
* o Paused
N PauseZ (variable time delay) operates with a
' R variable number of loops. The number of loops is
—-;L given by a parameter stored in a local variable.
. AT Before executing the delay it is compared to 0. After
R e [T A0 B the delay the local variable (Var)
T is decremented by 1.
|o,15§| The local variable is created when entering the sub
1 and destroyed on leaving the sub. Var can't be
1 accessed from outside.
L
 J

2 = WBlinken
I | ‘The main program only must call the sub with an
adequate blinking frequence. That is done with the constant 2.

ftComputing ROBO Pro : Tutorial Tips & Tricks - 4

WechselBlinker : Loops / Subs 3

E E, ;:
Ang w——————————-
. 'ar -

7 A%\

L]

%
[Hauptpra | [
= e T > J

Blinken

r

WechselBlinker has become an
additional parameter Anz for the
number of blinking loops (instead a
fix 10). The command A?B
compares parameter Anz with the
actual value of the local Var (loop
counter). Var is set to 0, if entering
the sub. A?B has three exit pins.
Two of them are connected to leave
the sub on Anz<=Var.

This compare could be done too
with an A?0 compare (look
PauseZ). in that case Var must be
decremented.

This sample uses level 3
commands for controlling the
lamps.

Haupty
inr-—. |
1"l ey Pausez M gn

Fauss

Panel elements combined for display a value and control a simple blinker. They are situated

on a grey form (menu painting). The square therefore must be place in background (menu
painting | object to background). The panel element are placed for a better view in the
function area of the main. There is a special tab for panel elements too.

The panel elements are suplemented by special panel inputs and panel outputs. In this case
there an EIN input corresponding to the EIN button, PauseE for the scrollbar for controlling

Tips & Tricks - 5

ftComputing ROBO Pro : Tutorial

the blinking frequence, Lampe for displaying the lamp state and PZe for displaying the actual
pause time.

You can see : inputs and outputs can be placed anywhere in the whole program and
displayed on a central place.

Because of the handling of the buttons is a little bit crucious (last run state is stored), it is
controlled towtimes in the main, once for starting the blinking (J command) and once for
ending (A>0, pushbutton).

In sub Blinken the scrollbar input (PauseE) is used with 3 yellow lines for PauseZ
parameters and for displaying purposes.

Analog : Storing to a List, Analog Display

\nalan — Analog scans in second intervals
e _ * J nesters| the actual value of the AX-Input
o ‘ [- au | with is connected to a photo
resistor. It is displayed on the
. "l analog control and digital too. The

(]
-ﬁ- ,"-U(_J_. @ — - 1 actual list size is displayed also.

IF1 T e
AWerde

- —.-—p-”:"']_’l"_r"". Storing to list AWerte is done by
: the special command append

\‘ value via the S-Entry of AWerte.
A

The analog values are send from

4 the AX-Input to the pin of append

T) value (right click to get him). At
>=10 1 ' beginning of the program the list
N~ , is empty an can contain max 100

l values (default). It is possible to
store start values in the list (right

1s m _ click : table). The max size can be
| e

.
F
Every changing of the list via S-Entry, the I-Exit contains the new number of list elements (on
program start too). In cause of exceeding the max number of 100 elements, the I-Exit

contains the value 0. In the sample excat 10 value are stored, numbered from 0 to 9. To
show them 1 sec delay.

ftComputing ROBO Pro : Tutorial Tips & Tricks - 6

Turm : Access to a List

N EY

-D‘.H’ Posx | Index

0
v
s 1 - - Hauptpra
Index
: _| Posx Hauptpro
. 0 -.‘- Position

Turm moves the pile of an Industry Robots (Rob 2, 3, 4) or Computing Starter (Welding
Robot) in an endless loop beginning with position 0 to 3. Therefore the list Positionen is filled
with coordinate values (right click, table : 0, 45, 150, 30). The movement of the pile is done
with the library routines PosX / Pos.

The variable Index the actual position value is choosen and transfered via R-Exit of the list
as a parameter to PosX. The R-Exit offers always a new value in case of a change of the I-
Input (done by variable Index). The same happens on program start. In that case the value
for index 0 is available, even if there is no Index connected. Therefore the incrementing is
done after the first position processing.

PosX has a special procedure for position 0 : moving strictly to the end switch without
counting and than set variable PosX to 0. The usual call Home can be dropped in this case.

After incrementing Index it is compared for Index>0 (A>0) to decide for remaining list values.
If not O is retrned. Caution the R-Exit than conains the value —32767.

For an endless processing Index is than set to 0 (on program start it is done automaticaly :
local variable) and the loop continous with a pause of 3 seconds for having a right view to
the spectacle.

Notice : Storing and accessing should be done in separate subs, because of possible
complications on use of the list Entries and Exits.

ftComputing ROBO Pro : Tutorial Tips & Tricks - 7

Industry Robots

General

Usual Assigning of Motors / M-Outputs and Switches / I-Inputs

X-Axis (Pile) : M1, I1 (end switch), 12 (impulse switch)

Y-Axis (Arm horizontal) : M2, I3, 14

Z-Axis (Arm vertical) : M3, 15, 16

4-Axis (Grip) : M4, 17 (end switch : grip open), I8 (impulse switch)

The impulse switch is a special (fourTooth) wheel, situated on a motor axis. It controls a
switch connected to an I-Input. The 0/1 and 1/0 changing of ist state is counted and used for
determining the position of the operateted component.

Working Area

The working area of an Industry Robot is counted in number of impulses up from the end
switch. It has values up from 90 to 230, depending on the component and the cable routing.

The get a coordinate 0, the robot must move to the end switch, at min, if starting the
program. That is done with left revolving (test panel : click to left button). If he doesn't do it,
change the wiring of the appropriate motor.

On reaching of an end switch, the corresponding (global) position variables should be set
to 0. The reversed procedure seems me to be better solution (set to max working area an
decrementing) but it is not usual. In this document home has the value 0.

ftComputing ROBO Pro : Tutorial Industry Robots - 8

The Tower only
NachHause : Moving until end switch bump

: ‘ The robots are using impulse wheel for controlling their actual
_¥ . position. The impulse wheels are mounted on an axis of the
P motor gear and are operated by a switch. The impulse wheel
has 4 cams — hights and downs — makes eight changes
i between on and off. The actual position ist counted as
111 .' impulsed from up the end switch (position 0).

‘ The tower motor is on M1 with end switch on |1 and impulse

7 switch on 12
/v @

To determine home position (position 0), the tower must run to 0 : the end switch. That is
done with the small program above :

Switch on motor M1.
Pulse counter in mode wait for 1 : waiting for 11 to be closed
Switch off motor M1.

For a good program a global variable Pos must be setto =0

Home : Go Home using a Sub

11

IF1

The function 'Drive to Home' now is placed in a sub using level 3 commands. A global
variable ActPos is added. With larger programs the program gets more clear. Alternatively
your can use the library routine PosX.

ftComputing ROBO Pro : Tutorial Industry Robots - 9

DriveTo : A special Position

(Start

L

?
[e
1!
-

i
e
&

-‘-—|

4

Ziel

The position is noted by the parameter ZielPos (DestinationPosition). The actual position is
stored in the global variable ActPos. ActPos must not to be seen in the main, but in Home.
The most interesting command is A?B which compares ZielPos with ActPos. If equal,
destination position is reached, motor off, return.

On ZielPos > ActPos the tower (M1) will turn right waiting for impulses of 12, each impulse is
added to ActPos. With ZielPos < ActPos the tower is on left turn in direction of the end
switch.

It makes sense to place a compare for end switch true or to use the library subs PosX / Pos.

ftComputing ROBO Pro : Tutorial Industry Robots - 10

Greifer : Sub with two Entries, Show Position

* e \._Sc
Eiaimg 13

The grip differs from the other components in its operating, it is only opened and closed. But
the angle to be closed is given with number of impulses. If transporting every time the same
'vellow barrell', a fix value can be choosen, may be 26.

Opening the grip is only done with a 'Wait for J' command.

In this case there are no parameters for opening and closing, it is done with the two different
entry points to Greifer (grip). This is a more oldfashioned method.

The main uses at the begin a separate Home followed by a Greifer. A Call Greifer can be
placed in Home alternatively.

The actual value of the global variable ActPos (actual position of the tower) is displayed in
main. A pair of additional Lamps for right / left turn would be nice. Can be done with the '='
command.

ftComputing ROBO Pro : Tutorial Industry Robots - 11

Some Notices about the Library Position ES

Position ES contains subs for moving to positions by counting impulses on the appropriate
impulse switches. For fixing the home (0) position an end switch is used, if true it is decided
to be home. The motor turn left (in term of ROBO Pro commands), if going in the direction of
the end swtch. The addition ES in the library name means end switch for pointing to this
feature.

Pos : Move to a single Position

* . < A0 D
< A=0 B> ¥
B 1
) 3
Soll o J
So o \
/AR v
‘ "“ A @ -

B\
T L
Ende— | | & ’_L —3

Puls 1 T’Ii_t | "‘_t

| -

L
Y

1"
-}

Ist

|

|5t ! -

—k
+
—

|

Parameter

- Soll : The destination position (variable or constant)

— Ist : Actual position, must be a global variable.
the same for in and out parameter, done to use Pos more flexible.
look to PosX.

- End : End switch

— Puls : Impulse switch

— Motor : Motor of that component.

On Soll = 0 it is a special case to rund to the end switch directly, without impulse counting
(turning left), afterwards ActPos is set to 0.

With Soll > 0 there is a loop beginning with an A?B comparision. In case of Soll > Ist : right
turn and incrementing, while Soll < Ist left turn and decrementing.

ftComputing ROBO Pro : Tutorial Industry Robots - 12

PosX : Move to a single Position with "X-Axis"

Work is done in Pos, PosX only
E organizes the actual parameters for the
l special case X-axis. The parameter X for

= destination position is passed through
A ™ "B from outside.
o =%] The handling of the actual position is of
' L . some interest. It is stored in the global
) variable PosX. Each changing of

parameter Ist causes a change of PosX,
*] this new PosX is given back to Pos.

In this manner it is possible to use Pos
for PosX, PosY, PosZ and Pos4.

PosInit : Go Home

The home position of the complete robot is reached step
by step with a call sub for each component. In this manner
there is a good change to operate under narrow

D (> Pos4 circumstances.

Poslinit is simple, it is using the special function with

D ez PosZ position 0 of Pos for a direct move to the appropriate end
¥ switch.

0 (= Fos Y
+

0 = Pas
+

Anzeige : Panel Elements

Gathers up all global variables (PosX, PosY, PosZ and Pos4) to be displayed and there
there panel outputs. They displayed on the panel with panel elements.

ftComputing ROBO Pro : Tutorial Industry Robots - 13

Pos XYZ : Simultaneous Move to Position X/Y/Z

<X x>-|x Pos X

(O

Moving to positions for the X-, Y- and Z-axis is done simultaneous in three different
prozesses : The main prozess and two new one, created and — later on detroyed — while the
sub is running. Each process (thread) executes one sub for postioning a robot component.
The main process — after doing ist positioning work — is waiting for the two other processes
to get ready. This is done with an wait for J command.

ftComputing ROBO Pro : Tutorial Industry Robots - 14

Rob 3 /4 : List operated

iRobListe : Main

Foslnit AnZeige Co

Is a very simple one. It contains the position displays and the call
Poslnit (Home) and call Play.

The modified library sub Anzeige contains the assigns from the
global variables to panel outputs, the panel displayed are erased.

The globla variables PosX (pile), PosY (arm horizontal), PosZ
(arm vertical) and Pos4 (grip), which are prepared in sub Anzeige
for display.

Sub Poslnit moves the whole robot to ist home position. That's the
position the appripriate end switches are true. They will moved to
left turning, first 4(grip), than Z, Y, X.

Play is that who does the most interesting work. The lists for the
components are used to move the whole robot to new positions. It
is done straight forward, if it is not enough, it can be done in an
endless loop. With or without PoslInit within (to have the exact
home in the loop) the loop.

ftComputing ROBO Pro : Tutorial

Industry Robots - 15

Play : Working with the Lists

Each robot component has its own list
which contain the positions to be moved to.
A unchanged position never the less must
be a list element.

The local variable Index, set to 0 at sub
start, points to the actual position within the
single list. Each changing of Index positions
the appropriate position value to the R-Exit
of the list and than to the parameter entry of
PosXYZ and Greifer. The new position is
moved to simultanoursly, if done the grip is
operated. Grip operating is done separat,
because of it must open or close on an
predicticable position. The grip gets the
values 0 and 1 for open/close. Greifer
internally uses the library sub Pos4, the
Pos4 parameter than contains the real
parameter value for closing.

After call Greifer done, Index will be
incremented by 1. The I-Exit sends a 0, if
Index is >= number of list elements (end of
list), otherwise the number of list elements
(the manual is not exact in describing the
list variable).

Notice : The library subs use names which contain blanks. That doesn't work well for long
time. In the program are no blanks in the names (or are that even two or nothing?).

ftComputing ROBO Pro : Tutorial

Industry Robots - 16

Teachln for Rob 3/ 4

iRobTeach : The Main

I NN EE
3--W
{ Down

| Close Delete

g
if:

Diagramm

The robot moves to home position. Than, in an endless loop, the (gray) 'Play' and 'Record’
buttons are scanned and, if true, the Play or Record sub called. The buttons are
pushbuttons, they will stay on until they are pressed again. Using the (modified) library
routine Anzeige (Display) the actual position is displayed vis PosX ---. The robot positions
are stored in global lists ListeX ... At start they contain a predefined position list — ready to
play --.

Some subs from the library Position ES are used in this program too (names without blanks)
and additional some iRobListe subs.

Panel

The panel elements are placed dirrectly on the main form, it is something more commode.
The upper row displays the actual position, down under them left a block with the Teachlin
buttons, they only work as long as they are pressed. Followed by buttons for store actual and
delete the last position. Right buttons for PayBack and Record.

ftComputing ROBO Pro : Tutorial Industry Robots - 17

Record : Storing the different Robot Positions

B . P BRI
....... [l

......................

....... Pt dFree
........... - Do e
LT - T

o ¥ e
I B i R I N N
.................... .
e L 1. L

Starts with the move to home position (Poslnit) and clearing the position lists (Delete, one list
can contain at max 100 elements). The remaining part is dominated by a large loop in which
the Teachln buttons are scanned and the appropriate subs are called. The subs Pos_Free
have as parameter the calling button and the max-position. The max-position determine the
direction of movement to, the calls therefore are always pairwise.

The end of the loop is occupied by the buttons Store / Delete. They contain a pause to
simulate a click event. In each cause lift your finger as quick as possible otherwise position is
stored multiple (men with a calm steady temperament should choose a longer pause time).

Notice : Independent from the value of the close position PlayBack closes the grip to position
26, you can change the constant value in Greifer.

If the button Record is no longer pressed, the loop ends, the robot goes back to home.

ftComputing ROBO Pro : Tutorial Industry Robots - 18

PosFree / Pos_Free : Move to a Position

PosFree is the general sub for free movement in direction of an max position, their
construction is similar to the library sub Pos (for details look their). It runs as long the button
(parameter Dir A>0) ist pressed or the minimax value becomes true.

A compare with the end switch is not implemented because of it very hawkful to handle (the
button is pressed for more than one impulse). Instead of this positions less than 0 (Ist <0)
cause an program end with position 0.

Pos_Free (PosXFree ...) provides PosFree with the special parameters for the component.
A fix motor number, special global variables, actual position — with a nice turn from Out to In
— logic of the yellow lines. See also library sub PasX ..

Some Point you should be angry with

1

2
3.
4
5

The actual index of the lists is not displayed.

Ther is no status text (Record Mode, Tower rotates ...)

The Pause in Store and Delete is a quick shut.

The Poslnit integrated in Record / Delete not alway is a nice solution.

and many more

All that should be done very much better — if angry enough for doing that.

ftComputing ROBO Pro : Tutorial Industry Robots - 19

	Tips & Tricks
	Techniques
	Blinker : Loops / Subs / Outputs
	WechselBlinker : Loops / Subs 2
	WechselBlinker : Loops / Subs 3
	Bedienung : Panel elements
	Analog : Storing to a List, Analog Display
	Turm : Access to a List

	Industry Robots
	General
	Usual Assigning of Motors / M-Outputs and Switches / I-Inputs
	Working Area

	The Tower only
	NachHause : Moving until end switch bump
	Home : Go Home using a Sub
	DriveTo : A special Position
	Greifer : Sub with two Entries, Show Position

	Some Notices about the Library Position ES
	Pos : Move to a single Position
	PosX : Move to a single Position with "X-Axis"
	PosInit : Go Home
	Anzeige : Panel Elements
	Pos XYZ : Simultaneous Move to Position X/Y/Z

	Rob 3 / 4 : List operated
	iRobListe : Main
	Play : Working with the Lists

	TeachIn for Rob 3 / 4
	iRobTeach : The Main
	Diagramm
	Panel

	Record : Storing the different Robot Positions
	PosFree / Pos_Free : Move to a Position
	Some Point you should be angry with

