fischertechnik Interfaces

umFish40.DLL

VC++, C#, VB.NET, Delphi, Java, Visual Basic 6
& and the FishPanel40

Documentation for Version 4.3

Ulrich Miiller

Contents

umFish40.DLL 3
Common 3
Extensions to Version 4.0 4
Extensions to Version 4.1 4
Extensions to Version 4.2 4
Versions 4
Connection of some newer Sensors 4
Functions 5
Notations 5
Messages 6

Error Handling 6
Function List 7

Notes to the umFish40.DLL Source 10
FtLib Functions 10
umFish40.DLL Functions 10
umFish40.DLL Details 11
Using umFish40.DLL 12
Common 12
InterfacePanel 13
VC++ 14
C# 15
VB.NET 16
Delphi 17
Visual Basic 6 18
Java 19
Notes to the Counters 20
Notes to the Rob Functions 20
Notes to Radio Control 21

Copyright © 2006 - 2009 Ulrich Maller. Document Name : umFish43e.DOC.

Print Date : 23.09.2009

Bild Einflgen | Grafik | Aus Datei | Office | Fisch6.WMF

fischertechnik Interfaces umFish40.DLL

Inhaltsverzeichnis - 2

umFish40.DLL

Common

umFish40.DLL v4.3.75.0 is based on the FtLib module v1.70a supplied by fischertechnik
integrated in umFish40.DLL. The listed Interface are supported in the so called Online Mode
(permanent connection to the PC) :

e First ROBO Interface at USB(ifTyp 0)
Intelligent Interface (ifTyp 10)

¢ Intelligent Interface with Slave (ifTyp 20)

e ROBO Interface, Intelligent Interface Mode (ifTyp 50)

e ROBO Interface at USB (ifTyp 60)

e ROBO Interface at COM (ifTyp 70)

e ROBO Interface via RF (ifTyp 80)

e ROBO I/O Extension at USB (ifTyp 90)

¢ ROBO RF Datalink at USB (ifTyp 110)

e ROBO Connect Box at USB (ifTyp 200)

The ROBO Inteface can be attached with up to 3 ROBO /O Extensions.

Up to now the M- and O-Outputs and the I-, IR-, D- and A-Inputs are supported.

The ROBO Connect Box supports the operating of the Universal - and the Intelligent
Interface. Extensions are not supported by the Connect Box.

Several Interfaces can be operated simultaneous (COM / USB mixed too). The special
Interface is identified by a handle (iHandle).

In addition to the functions offered by FtLib umFish40.DLL supports an impulse counter for
each |-Input, opening and closing of an input are counted separately. Based on this there are
RobMotors : A fix combination of motor, end switch an impuls switch ->

M1, 11,12 ... M4, 17, 18.

Goal of the umFish40.DLL developement is building a base for using it from most of the
common programming languages. Therefore no C++ typical data types are used. Only int
(32bit, signed) variables are used.Never the less some programming languages nee special
constructs : Java -> a wrapper.DLL (JNI), script languages -> a ActiveX.DLL. The return
values of the type LPCSTR are an exeption, they only can be used with VC++.

Not contained in the download package is the ROBO Interface firmware, the USB driver and
the FtLib files. They can be downloaded from
http://www fischertechnik.de/computing/software.htmi.

fischertechnik Interfaces umFish40.DLL umFish40.DLL - 3

http://www.fischertechnik.de/computing/software.html

For installing firmware and USB driver the best is to use ROBO Pro. The FtLib is not needed
separately. Alternatively the drivers and new Firmware for the ROBO Connect Box can be
downloaded from http://www.ftcomputing.de/zip/RoboConnectBox.zip.

For testing purposes of a new model umFishDP40.EXE is recommended (part of
umFish43.ZIP).

Note : If a running application is aborted from the IDE it is possible not all storage is
released. On too less storage : Boot him.

Extensions to Version 4.0

Support for the message exchange between a PC application and an application on the
interface itself (e.g. written in Renesas C). Therefore the ROBO Interface firmware
v1.64.0.03, for radio layer v0.44.0.03 and ROBO RF Datalink v0.44.0.03 is needed. In other
case elder firmware and umFish40.DLLs will do it.

Extensions to Version 4.1

In Addition the ROBO Connect Box for operating the Universal- and the Intelligent Interface
is supported.

Usually the Connect Box is used as "first ROBO Device to USB". On the side of the
application programs that devices work like ROBO Interfaces. Of course they only support
the Inputs AX/AY (now Ex/EY) and E1...E8 (now I1 ... 18).

Extensions to Version 4.2

The inputs D1 and D2 now can be used alternatively as additional voltage inputs (default) or
for operating the actual UltraSonic sensor. This version supports Java again.

Versions

ROBO Interface Firmware v1.75.0.04 with RF v0.47.0.03
FishFace2005.DLL v4.3.75.2005, umFish40.DLL v4.3.75.0 with FtLib v1.70a

Connection of some newer Sensors

See also the fischertechnik documentation for the ROBO Explorer

DistanceSensor : Connection wire red/green to D1 or D2, no pole directions.
rbOpenlinterfaceUSBdis must be called with ftiDisUltra
for use with rbGetDistanceValue(ftiD1 / ftiD2).

ColorSensor : Connection wire red to + and green to ground, black to A1/A2
(inner side) for use with rbGetVoltage(ftiA1 / ftiA2)
TrackSensor : Connection wire red to + and green to ground.

yellow / blue to two different I-Inputs (inner side)
For use via rbGetlnputs(), rbGetinput(InputNr)

fischertechnik Interfaces umFish40.DLL umFish40.DLL - 4

Functions

Notations

Parameter names and their value range

Value range in brackets : ROBO Interface with 3 Extensions connected.

iHandle
MotNr
LampNr

InputNr

Inputwert
InputStatus
CounterNr

AnalogNr

Analogwert
VoltNr

Dir

MotorStatus
Mode
ModeStatus
Speed
SpeedStatus
Power
OnOff
ICount

ifTyp

SerialNr

ComNr
RbFehler

int

Handle to identify the actual Interface (1 — 8).
Numberr of an M Output 1 — 4 (16)

Number of an O Output 1 — 8 (32). "Half" M Output
Not with the Intelligent Interface.

Number of an | Input 1 — 8 (32).
Intelligent Interface : E Input 1 — 8 (16)

Value of an | Input 0/ 1
State of all (max. 32) | Inputs, 11 right, each 1bit.
Number of th Counter of an | Input 1 — 8 (32)

AX//AY [AXS1/AXS2/AXS3:1-2(5)
Intelligent Interface EX/EY : 1 -2

Value of an A Input 0 - 1023

A1/A2/AV/AZ:1-4
Not with the Intelligent Interface

Rotation direction of the M Outputs :
Off, Aus = 0, Left, Links = 1, Right, Rechts = 2

Direction values of all motors, M1 right bits, 2bit

Operating mode of a motor. Normal = 0, RobMode = 1

Operation mode of al motors, M1 right bits, 2bit

PWM speed level (M Outputs) : 0 -7

Speed level of 8 motors M1 — M8 and M9 — M16, M1 / M9 right bits, 4bit
PWM level (O-Ausgéange): 0 -7

On, Ein/ Off, Aus: 1/0

Value of an impulse counter

Type of the Interface (look : Common remarks)

Standard serial number of an ROBO Interface.
Serial number = 0 means first Interface found on USB.

Number of the COM port the Interface is connected to. 1 — 4
Error code rbFehler or 0

Common 32bit int value, signed.

All parameters are of the type int (32bit, signed)

fischertechnik Interfaces umFish40.DLL umFish40.DLL - 5

Messages

Are handle within the structure MessageData :

typedef struct {
BYTE Hwild; Sending mode (allways 2 : Send to all other participants)
BYTE Subld; Class of the message
USHORT Msgld; Number of the message
USHORT Msg; The message itself.

} MessageData;

With exception of Hwld the parts of the message can be used by own suggestions. A
special use besides word borders is possible. Mostly the interpretation of the context is
the right way. Testing with VC++ IDE they could be inspected.

Error Handling

All functions have an return value, which is rbFehler (0xXEO000001). In case of success 0 or
the special return value of the function. The return codes of FtLib are not used because on
normal testing they are not very helpfull.

fischertechnik Interfaces umFish40.DLL umFish40.DLL - 6

Function List

iHandle

iHandle

iHandle

iHandle

iHandle

rbFehler

A-and | Inputs
OnOff

int

int

int

int

D-Inputs

int

rbOpeninterfaceUSB(ifTyp, SerialNr)

Making of a connection to an Interface at USB (via ROBO RF Datalink
included, ROBO Interface with the same channel number is used).
ifTyp = 0 : first Interface at USB, in this case SerialNr = 0.

ROBO Pro : 7.1.1 (nearly)

rbOpeninterfaceUSBdis(iTyp, SerialNr, DistanceMode)

Making of a connection to an Interface at USB (see above).

In addition : DistanceMode = ftiDisUltra - operating of UltraSonicsensors
at the inputs D1/ D2, = ftiDisVolt - operating as Voltagelnput, = ftiDisOff -
deactivated.

rbOpeninterfaceRF(SerialNrinterface)

Making of a RF connection to an Interface via ROBO RF Datalink (first
Datalink on USB). For identification of the Interface SerialNrinterface. The
Interface must have power but no USB connection.

rbOpeninterfaceRFdis(SerialNrinterface, DistanceMode)

Making of a RF connection to an Interface (see above).

In addition : DistanceMode = ftiDisUltra - operating of UltraSonicsensors
at the inputs D1/ D2, = ftiDisVolt - operating as Voltagelnput, = ftiDisOff -
deactivated.

rbOpeninterfaceCOM(ifTyp, ComNr, AnalogZyklen)
Making of an connection to an Interface at COM
ROBO and Intelligent Interface.

ROBO Pro :7.1.1 (nearly)

rbCloselnterface(iHandle)
Ending an Interface connection
ROBO Pro : 7.1.e (nearly)

rbGetlnput(iHandle, InputNr)
Read the state of the addressed lInput
ROBO Pro :7.1.3

rbGetlnputs(iHandle)
InputStatus : State of all | Inputs (11 right, 1bit)

rbGetAnalog(iHandle, AnalogNr)

Read of the actual analogous valus of the addressed A Input
(AX, AY bzw. EX, EY and AXS1, AXS2, AXS3)

ROBO Pro :7.1.4

rbGetIRKey(iHandle, Code, KeyNr)
Read the state of the address IR Keys of the IR sender

rbGetVoltage(iHandle, VolItNr)
Read of the voltage value of the addressed A Input (A1 — A2, AV)
ROBOPro :71.4

rbGetDistanceValue(iHandle, SensorNr)

Read the actual distance value (cm) of the noted UltraSonicSensor
(ftiD1, ftiD2)

Note : Must be preceeded by rbOpenlinterfaceUSBdis or
rbOpenlinterfaceRFdis with DistanceMode = ftiDisUltra.

fischertechnik Interfaces umFish40.DLL umFish40.DLL -7

M- und O-Ausgénge :

rbFehler

rbFehler

int

rbFehler

rbFehler

int

rbFehler

rbFehler

rbFehler

rbFehler

rbFehler

Impulse Counter :
ICount

rbFehler

rbFehler

rbSetMotor(iHandle, MotNr, Dir)
Setting of an M Output with Speed =7
ROBO Pro :7.1.6

rbSetMotorEx(iHandle, MotNr, Dir, Speed)
Setting of an M Output with specifying the Speed
Speed will be not work with the Intelligent Interface
ROBO Pro :7.1.6

rbGetMotors(iHandle)
State of all M Outputs (M1 right, 2bit)

rbSetMotors(iHandle, MotorStatus)
Setting of all M Outputs (M1 right, 2bit), normal mode, speed = 7

rbSetMotorsEx(iHandle, MotorStatus, SpeedStatus, SpeedStatus16)
Setting of all M Outputs, speed included, normal mode

rbGetModeStatus(iHandle, MotNr)
State of the ModeStatus of one M Output (Normal = 0, RobMode = 1)

rbSetModeStatus(iHandle, MotNr, Mode)
Setting the ModeStatus of one Moutput (Normal = 0, RobMode = 1)

rbSetLamp(iHandle, LampNr, OnOff)
Setting of an Output with Power =7
ROBO Pro :71.7

rbSetLampEx(iHandle, LampNr, OnOff, Power)
Setting of an O Output, Intensty included
ROBO Interface / Extension only

ROBO Pro :7.1.7

rbRobMotor(iHandle, MotNr, Dir, Speed, ICount)

Starting of a M Output with RobMode (Motor, end switch, impulse switch).
The function run asynchronous and ends if ICount = 0 or end switch is
true (on left turning). ICount state can be controlled with rbGetCounter.
ROBO Pro :7.1.6and 7.1.9

rbRobMotors(iHandle, MotorStatus, SpeedStatus, SpeedStatus16,
ModeStatus)

Setting of the complete state of all M Outputs, used counters must be set
separately.

rbGetCounter(iHandle, CounterNr)
Read the value of an impulse counter
ROBO Pro :7.1.9

rbSetCounter(iHandle, CounterNr, ICount)
Setting the value of an impulse counter
ROBO Pro :7.1.9

rbClearCounter(iHandle)
Clear all impulse couters to 0.
ROBO Pro :7.1.9

fischertechnik Interfaces umFish40.

DLL umFish40.DLL - 8

Radio Functions :

rbFehler rbClearMessagesin(int iHandle)
Clearing of the queque of incoming messages

rbFehler rbClearMessagesOut(int iHandle)
Clearing of the queque of outgoing messages

rbFehler rbGetMessage(int iHandle, MessageData* inNachricht)
Peek of a broadcast message from the queque

int rblsMessage(int IHandle)

check for incoming messages
0 = no, > 0 = number of message or rbFehler

rbFehler rbSendMessage(int iHandle, MessageData* outNachricht)
Poke a broadcast message to the output queque
rbFehler rbSendMessageEx(int iHandle, MessageData* outNachricht, int Spez)

conditioned poke of a broadcast message :
0 = always, 1 if new inspect of the last one in the queque,
2 = if not contained in the queque.

Information Functions : ROBO Pro : Interface Test

int rbGetActDeviceType(iHandle)
Read of the device type of the active Interface
Only if rbOpeninterface has been successfull -> rbFehler

int rbGetActDeviceSerialNr(iHandle)
Read of the serial number of the active Interface.
Only if rbOpeninterface has been successfull -> rbFehler

int rbGetActDeviceFirmwareNr(iHandle)
Read of the firmware number of the active Interface.
Erfolgreiches rbOpenlnterface erforderlich, sonst RbFehler

LPCSTR rbGetActDeviceFirmware(iHandle)
Read of the firmware string of the active Interface.
Only if rbOpenlinterface has been successfull -> rbFehler

LPCSTR rbGetActDeviceName(iHandle)
Read of the name of the active Interface.
Only if rbOpenlinterface has been successfull -> rbFehler

fischertechnik Interfaces umFish40.DLL umFish40.DLL - 9

Notes to the umFish40.DLL Source

umFish40.DLL is a system.DLL, written in VC++ 6.0, which uses for the real Interface access
the functions of FtLib_Static_LIBCMT_Release.lib (supported by fischertechnik). It offers a
number of base functions for the access to the Interfaces of the ROBO series and the
Intelligent Interface. In addition to the functions offered by FtLib umFish40.DLL supports an
impulse counter for each I-Input, opening and closing of an input are counted separately.
Based on this there are RobMotors : A fix combination of motor, end switch an impuls switch
> M1, 11,12 ... M4, 17, 18.

Goal of the umFish40.DLL developement is building a base for using it from most of the
common programming languages. Therefore no C++ typical data types are used. Only int
(32bit, signed) variables are used.Never the less some programming languages nee special
constructs : Java -> a wrapper.DLL (JNI), script languages -> a ActiveX.DLL. The return
values of the type LPCSTR are an exeption, they only can be used with VC++.

The source contains the following main files :

e umFish40.DEF : Declarations of the DLL entries

e umFish40.H : Declarations of external funtions, interna
e umFish40.CPP : The functions.

e umFtLib.H : The fischertechnik FtLib.H for FtLib access.

FtLib Functions

The FtLib controls the direct access to the Interfaces. Therefore it containes a series of
function to control the connection to the Interfaces (OpenFtUsbDevice / OpenFtCommDevice
... StartFtTransferArea ...) and some information functions (GetFtDeviceType /
GetFirmwareStrg ...) and in additon functions for the download of assembled programs to the
ROBO Interface (not used in umFish40.DLL).

The main part of communication with the Interface is done using a communication area — the
TransferArea — this area is actualized every 10 ms. It contains the values of the Inputs,
Outputs In this frequence a CallBack Entry is called. With data in a structure :
NOTIFICATION_EVENTS. It is used by umFish40.DLL to supply additional functions.

umFish40.DLL Functions

Main task of umFish40.DLL is to prepare the data of the TransferArea and to convert them to
functions. e.g. 'unsigned char E_Main' is converted to the function rbGetlnput(InputNr),
which notes the state of a single | Input. The Inputs and Outputs are counted — in opposite to
FtLib — continously (I Inputs 1 — 32, M Outputs 1 — 16):

The complicate building of an Interface connection is reduced to a single function
(rbOpenlnterfaceUSB / rbOpeninterfaceCOM). The closing of a connection is reduced to
rbCloselnterface.

The additional functions of umFish40.DLL are situated in a CallBack routine. They are
extracted from the FtLib structure NOTIFICATION_EVENTS an transformed to functions.

The information functions of FtLib are offered as umFish40.DLL functions as far as it seems
to be usefull.

The function Code Download is not supported.

fischertechnik Interfaces umFish40.DLL umFish40.DLL - 10

umFish40.DLL Details

umFish40.DLL supports up to 8 Interface connection for simultaneous operating. The
instance data therefore are placed in the array ROBOlnstanz. The single Openlnterface
returns as an handle an index to that array to identify the instance.

A typical access to the TransferArea looks like this :
rbI[iHandle].ftDCB->M Main |= MLinks[n];
Switch Mn to left

The construction :
if (rbI[iHandle] .ftDCB == NULL) return rbFehler;
is used to check for a correct Openlnterface.

1f (! (IsFtTransferActiv (rbI[iHandle].ftHandle) ==
FTLIB ERR THREAD IS RUNNING)) return rbFehler;
fis an check for an existing connection to an Interface.

The Inputs and Outputs are counted beginning with 1, internally beginning with 0. Therefore
e.g. an MotNr-- is to be found at the beginnig of a function.

Masking of Input and Output areas is alternatively done by table and by shifting.

fischertechnik Interfaces umFish40.DLL umFish40.DLL - 11

Using umFish40.DLL

Common

umFish40.DLL is delivered as compiled DLL and as VC++ project.

Additionaly there are some "H-Files" (declarations, classes) for use in different programming
languages. They are supplemented by a typical HelloROBO program (M1 blinking 5 times
after 11 comes to true). First ROBO Interface at USB.

umFish40.DLL first is a base for the development of own libraries. Direct using may be
complicated because of no DoEvents (interrupt to process Windows messages) or ESC key
(cancel) is contained. Some programming languages (Script, Logo, Java ..) can't process
system.DLLs. For many languages exits FishFace class libraries based on umFish40.DLL
which have more sophisticated functions too.

The Hello projects contain a sample for sending an arbitrary message for demonstration
purposes. Nevertheless the Hello can be executed on ROBO Interfaces without radio
functions or on ROBO 1/O Extensions.

fischertechnik Interfaces umFish40.DLL Using umFish40.DLL - 12

InterfacePanel

+ ftcomputing : FizhPanel 40

0080 BEEE EEEE

Input I

0011 RLEE RLES
Qutput M4 M3 M2 M1

Draver : Strg + L bzw. A
Analog Ax 284 AY 440

292 AT &l
A

S

HC [ROBO first USE

=
[~ Extension O I I

RESET |

Is delivered as EXE file

(umFishDP40.EXE). Can be used to control newly assembled fischertechnik model for ist

function and for setting the model to a defined position.

fischertechnik Interfaces umFish40.DLL

Using umFish40.DLL - 13

VC++

New VC++ 6.0 project

1
2.
3.
4

Menu Files New ...
Add the program source
Add umFish40.H and umFish40.lib

umFish40.DLL (Release Version) must be in an acceble path : Directory Debug of the
project or WinNT\System32

Project parameter : Win32Debug | C/C++ Kategorie CodeGeneration | LaufzeitBibliothek
: Multithreaded.DLL (sorry german version)

#include <Windows.h>
#include <iostream.h>
#include "../umFish40QVC.H"

void main () {

char Ende;

cout << "--- HalloROBO : es geht los —---" << endl;

int iHandle = rbOpenInterfaceUSB(ftROBO first USB, 0);

if (iHandle == rbFehler) {
cout << "Da stimmt etwas nicht : ENDE (Enter-Taste)" << endl;
cin.get (Ende) ;

endl;

return;
}
cout << "Interface : " << rbGetActDeviceName (iHandle)
<< ", Typ : " << rbGetActDeviceType (iHandle)
<< ", SerialNr : " << rbGetActDeviceSerialNr (iHandle) <<
cout << "Firmware : " << rbGetActDeviceFirmware (iHandle) << endl;

cout << endl << "Start : Il druecken" << endl;
while (!rbGetInput (iHandle, 1)) {Sleep(123);}
for (int i = 0; 1 < 5; i++) {

rbSetMotor (iHandle, 1, 1);

Sleep(333);

rbSetMotor (iHandle, 1, 0);

Sleep(333);
}
rbCloselInterface (iHandle) ;
cout << endl << "--- FINIS : Enter-Taste ---" << endl;
cin.get (Ende) ;

fischertechnik Interfaces umFish40.DLL Using umFish40.DLL - 14

C#

using
using
using
using

System;
System.Threading;
cs = System.Console;
um = HelloCSROBO.umFish40CS;
namespace HelloCSROBO {
class Rahmen {

uint iHandle;

[STAThread]

static void Main(string[] args)
Rahmen rt new Rahmen () ;

{

cs.WriteLine("--- Hello ROBO gestartet —---");

rt.Action () ;

cs.WritelLine ("--- Hello ROBO beendet (Return-Taste) ---");
cs.Read() ;

}

private void Action ()

{

iHandle =
um.rbOpenInterfaceUSB ((int) IFTypen.ftROBO first USB, 0);
if (iHandle == um.rbFehler) {
cs.WritelLine ("Da stimmt was nicht ENDE (Return-Taste)"):;
return;

}

cs.WriteLine ("IN ACTION

while (um.rbGetInput (iHandle,

for (int i 0; 1 < 5; i++) {
cs.WritelLine ("Blinker "
um.rbSetMotor (iHandle, 1,
um.Sleep (333) ;
um.rbSetMotor (iHandle,
um.Sleep (333) ;

1)

+ i) ;
1);
1, 0);
}

um.rbCloselInterface (iHandle) ;

}

Start I1 dricken");

) {um.Sleep(123);};

Console project. The elements of the class umFish40CS are static, in this case no instance

is needed.

fischertechnik Interfaces umFish40.DLL

Using umFish40.DLL - 15

VB.NET

Imports cs = System.Console
Imports um HelloVBNETRobo.umFish40VBNET

Module HelloMain

Sub Main ()
Dim 1%, iHandle$%
cs.WriteLine ("--- Hello VB.NET gestartet ---")
iHandle = um.rbOpenInterfaceUSB (IFTypen.ftROBO first USB, 0)
If iHandle = um.rbFehler Then
cs.WritelLine ("Da stimmt was nicht : ENDE (Return-Taste)")
Return
End If
cs.WritelLine ("Interface : " &
um.rbGetActDeviceType (iHandle) & " / "
& um.rbGetActDeviceSerialNr (iHandle))
cs.WriteLine("mit Firmware : " &
um. rbGetActDeviceFirmwareNr (iHandle) .ToString ("X"))
cs.WritelLine ("IN ACTION : Start Il drtucken")

While um.rbGetInput (iHandle, 1) = 0
um.Sleep (123)

End While

For i = 1 To 5
cs.WritelLine ("Blinker : " & 1)

um.rbSetMotor (iHandle, 1, 1)
um.Sleep (333)
um.rbSetMotor (iHandle, 1, 0)
um.Sleep (333)

Next
um.rbCloseInterface (iHandle)
cs.WritelLine ("--- Hello VB.NET beendet (Return-Taste) ---")
cs.Read ()
End Sub

End Module

Console project.The elements of the class umFish40VBNET are static, in this case no
instance is needed.

fischertechnik Interfaces umFish40.DLL Using umFish40.DLL - 16

Delphi

Tested with Delphi4, | think it will do with Delphi 2 — Delphi 7.

program HalloDelphiROBO;

uses
Windows, SysUtils,
umFish40 in 'umFish40.PAS';
var
ft, i: LonglInt;
begin
ft := rbOpenInterfaceUSB(ftiROBO first USB, 0);
if ft = ftiFehler then begin

Writeln ('Hier stimmt etwas nicht : ENDE (Enter-Taste)');

ReadLn;
exit;
end
else WriteLn('HalloDelphiROBO in Action');

WriteLn ('Interface : ' + IntToStr (rbGetActDeviceType (ft)) +

' / ' 4+ IntToStr (rbGetActDeviceSerialNr (ft))) ;

Writeln ('mit Firmware : ' +
IntToStr (rbGetActDeviceFirmwareNr (ft))) ;
WriteLn ('Start : Il druecken');

while rbGetInput (ft, 1) = 0 do Sleep(123);
for i := 1 to 5 do begin
WriteLn ('Runde : ' + IntToStr(i));
rbSetMotor (ft, 1, ftiEin);
Sleep (333);

rbSetMotor (ft, 1, ftiAus):;
Sleep (333);
end;
rbCloselnterface(ft) ;
WritelLn ('HalloDelphiROBO beendet'); ReadLn;
end.

fischertechnik Interfaces umFish40.DLL

Using umFish40.DLL - 17

Visual Basic 6

Option Explicit
Dim iHandleé&

Private Sub Form Load()

iHandle = rbOpenInterfaceUSB(ftROBO first USB, 0)
If iHandle = rbFehler Then
MsgBox "Hello ROBO : Da stimmt etwas nicht"
End
End If
End Sub
Private Sub cmdAction Click()
Dim ié&
lstAus.AddItem "Hello Robo gestartet"
lstAus.AddItem "Interface : " & rbGetActDeviceType (iHandle) &
" / " & rbGetActDeviceSerialNr (iHandle)
lstAus.AddItem "Firmware : " & rbGetActDeviceFirmwareNr (iHandle)
lstAus.AddItem "Start : Il dricken"
Do: DoEvents: Sleep 123: Loop Until rbGetInput (iHandle, 1) = 1
For 1 = 1 To 5
lstAus.AddItem "Runde : " & 1
rbSetMotor iHandle, 1, 1
DoEvents
Sleep 333
rbSetMotor iHandle, 1, O
DoEvents
Sleep 333
Next i

lstAus.AddItem "FINITO : Das wars (x—-Klicken)"

End Sub

Private Sub Form Unload(Cancel As Integer)
rbCloseInterface (iHandle)
End Sub

fischertechnik Interfaces umFish40.DLL

Using umFish40.DLL - 18

Java

import ftcomputing.robo.*;
public class TestJF {
public TestJF () {}
public static void main (String[] args) {
TestJF testJF1l = new TestJF () ;

System.out.println ("--- FishROBO-Test gestartet (TestJF) ---");
testJF1.Action () ;
System.out.println ("--- FishROBO-Test beendet ---");

}

public void Action() {

JavaFish ft = new JavaFish():;
int iHandle;
iHandle = ft.jrOpenInterfaceUSB(0, O0);
System.out.println ("Action : Il druecken");
while (ft.jrGetInput (iHandle,1l)==0) Thread.yield() ;
int Runde = 0;
do {
try {
System.out.println ("Runde : " + Runde+t+);
ft.jrSetMotors (iHandle, 0x01) ;
Thread.sleep (333);
ft.jrSetMotors (iHandle, 0x03);
Thread.sleep (333);
ft.jrSetMotors (iHandle, 0x07);
Thread.sleep (333) ;
ft.jrSetMotors (iHandle, 0x08);
Thread.sleep (666) ;
} catch(InterruptedException e)
} while ((ft.jrGetInput (iHandle, 1
(JavaFish.escape () == 0))
ft.jrSetMotors (iHandle, O0);
ft.jrCloseInterface (iHandle) ;
}

{}
) == 0) &&

r

In this case is in addition to umFish40.DLL the JNI conform wrapper.DLL javaFish40.DLL
needed. javaFish40.DLL transforms the umFish40.DLL functions in a manner that they can
be used with Java class JavaFish in the directory ftcomputing\robo\JavaFish.java. JavaFish
has the same function as umFish40.DLL but in this case they are beginnig with jr.

With radio control only Route Through (PC via RF Datalink) is supported.

The demo program installs a connection to the first ROBO Interface at USB and switches
some (traffic) lights (may be motors too). All M-Outputs are switched simultaneously.

fischertechnik Interfaces umFish40.DLL Using umFish40.DLL - 19

Notes to the Counters

An essential element of determining the position are the counters. There is a counter for
each | Input (attention : 11 in some languages is 0 in others is 1). The counters will notivy
(and count) each change of the state of an input (e.g. opening or closing a switch).

The counter can be read and set with special functions. The counter are used internally be
some functions (e.g. roRobMotor).

Notes to the Rob Functions

the Rob function are running in a special oprating mode, the RobMode. in thes mode the
invlved counters are decreased. Reaching the value 0, the motor belonging to the counter is
switched off.

Operating of a motor in RobMode uses a fix concept of wiring the motors. Each motor is
associated with an en switch and an impulse switch :

Motor | Endtaster |Impulstaster
1 1 2

2 3 4

3 5 6

4 7 8

5 9 10

6 11 12

7 13 14

8 15 16

And up to 16 if connected to an ROBO Interface with 3 Extensions.

The motors are "left turning". That means, they run in direction of the end switch if turning
ftLinks / ftLeft.

A single motors can be operated with rboRobMotor. The parameter ICount stands for the
number of impulses to be run. ICount is decreased to 0.

All RobMotors can be operated with one function at the same time : rbRobMotors. The
values for all motors come in the parameter :

MotorStatus : each motor 2bit, M1 : bit 0 and 1
00 : off, 01 left, 10 right.

SpeedStatus : each motor 4bit, M1 : bit 0-3,
0000 off, 0100 half power, ... 0111 full.
ModeStatus : each motor 2 bit, M1 : bit 0-1,

00 NormalMode, 01 RobMode.

Example : rboRobMotors(ft, 0x9, 0x74, 0x0, 0x05);

0x means Hexa, binary : MotorStatus 1001 SpeedStatus 01110100 ModeStatus 0101 -> M2
= right, Speed 7 with Rob-Mode, M1 = left, Speed 4 with RobMode. Other motors are
stopped. Before using rbRobMotors the impulse counter for each RobMotor are to be set.

The motors operate simultaneously (up to 16 motors). They can be switched one after the
other by rbRobMotor or all together with rbSetMotors. The stop if their special counter is
come to 0. The MotorStatus bits are set to 0. Controlling MotorStatus for O can be used for
synchronizing purpusoses. 00 of all RobMotor in MotorStatus means all motors are stopped,
destination is reached.

fischertechnik Interfaces umFish40.DLL Using umFish40.DLL - 20

Notes to Radio Control

Components of the radio control are the ROBO RF Datalink and ROBO Interfaces with RF
card.

There are three different kinds of radio controlled operation :

1. Route Through : An Interface with RF card is connected via RF Datalink to the PC. The
application will run without knowing the kind of connection. Advantage : A model with
Interface and RF card can operate freely in the landscape. Controlling an user interface
is situated on the PC.

This is the kind of radio control supported by umFish40.DLL.

2. Autonom : Some Interface with RF card communicate via radio control. In this case the
RF Datalink has a role as a Messages Routers. The applications are running on the
Interfaces.

Not supported by umFish40.DLL.

3. Route Through and Message Router. The first Interface is opperated by the PC
application, the other run autonomously. The can be reached from the application of the
first Interface via radio control.

This kind of radio control is supported by umFish40.DLL on the side of the PC.
Programming of the other Interfaces must be done with Renesas C or ROBO Pro.

Therefore umFish40.DLL supports some special functions :

- rbSendMessage for sending a buffered broadcast message.

— rbGetMessage and rblsMessage to receive incoming messages from the input queque. In
addition rbClearMessagesin, rbClearMessagesOut for clearing the message queques.

— The structure MessageData for transporting the message data. Hwld contains the kind of
sending (RF Broadcast via radio, Code 2). Other fields of the structure can be used free.

The Hello Demos contain a rbSendMessage for a very simple attemp. But therefore some
more preparation must be done :

- ROBO RF Datalink with RF2/0 at USB
The Datalink must only be present.

- ROBO Intelligent Interface with radio card (with RF2/1) connected only to power
and switch at I1 and a lamp on M1. The Interface is controlled by the PC. A message is
to be sended and the lamp is blinking.

- ROBO Intelligent Interface with radio card (with RF2/2) connected only to power and a
motor on M1. Loaded with an application (Renesas C / ROBO Pro) waiting in an endless
loop for a message. Receiving a message — without looking to the contents — the motor
on M1 is started for one second, left direction.

At Start of the demo the motor will run (RF 2/2), afterwards blinking is done.

fischertechnik Interfaces umFish40.DLL Using umFish40.DLL - 21

	umFish40.DLL
	Common
	Extensions to Version 4.0
	Extensions to Version 4.1
	Extensions to Version 4.2
	Versions
	Connection of some newer Sensors

	Functions
	Notations
	Parameter names and their value range

	Messages
	Error Handling
	Function List

	Notes to the umFish40.DLL Source
	FtLib Functions
	umFish40.DLL Functions
	umFish40.DLL Details

	Using umFish40.DLL
	Common
	InterfacePanel
	VC++
	
	New VC++ 6.0 project

	C#
	VB.NET
	Delphi
	Visual Basic 6
	Java
	Notes to the Counters
	Notes to the Rob Functions
	Notes to Radio Control

