
C/C++ Corner

C/C++ Corner

ftComputing : Programme für die fischertechnik-Interfaces und -
konstruktionskästen

NEU Computing DLLs Modelle Downloads English Pages

ftComputing.de

Home
Back
HelloFish
About Threads
umFish30 Notes

Sitemap
Index
Links
Impressum

Mail

General

This page will give a short overview were C/C++ items are
to be found (preferred english pages, but german too) and
will give in addition some explanations to selected items.

Programming

Programming is based on umFish30.DLL (programmed in
VC++ 6.0, contained in zip-file umFish30.ZIP). The ZIP
contains Declarations, the class TFishFace and examples for
VC++ Console- and C++Builder Windows programming. An
english documentation for umFish30.ZIP (not special for
C/C++) you will find in umFish30NotesE.PDF. English "Notes
and Overview to umFish30 for C/C++" (PDF format) are
here. A ZIP-file containing the "Notes" and the sources for
the discussed examples is ccFish30.ZIP.

● umFish30VC.H / umFish30.LIB static declarations
for direct access to the umFish30 functions.
Note : umFish30.LIB has VC++ 6.0 specific format,
therefore it only can be used with VC++ 6.0.

● umFish30Load.H dynamic loading of the umFish30
functions. Can be used with VC++ (all versions) and
C++Builder.

● FishFa30.H/CPP an C++ class using umFish30.DLL /
umFish30Load with some additional, more
sophisticated functions and an exception handling. For
use with the C++Builder.

A HelloFish program using umFish30 with cs style functions
is here.

InterfacePanel

file:///C|/VS/ftComputing2004/ccppe.htm (1 von 3) [10.08.2004 20:42:07]

file:///C|/VS/ftComputing2004/fishneu.htm
file:///C|/VS/ftComputing2004/compute.htm
file:///C|/VS/ftComputing2004/fishdlls.htm
file:///C|/VS/ftComputing2004/modelle.htm
file:///C|/VS/ftComputing2004/download.htm
file:///C|/VS/ftComputing2004/sitemape.htm
file:///C|/VS/ftComputing2004/index.htm
file:///C|/VS/ftComputing2004/sitemape.htm
file:///C|/VS/ftComputing2004/sitemap.htm
file:///C|/VS/ftComputing2004/indexx.htm
file:///C|/VS/ftComputing2004/links.htm
file:///C|/VS/ftComputing2004/urheber.htm
file:///C|/VS/ftComputing2004/urheber.htm#Mail
file:///C|/VS/ftComputing2004/zip/umfish30.zip
file:///C|/VS/ftComputing2004/pdf/umFish30NotesE.pdf
file:///C|/VS/ftComputing2004/pdf/ccfish30e.pdf
file:///C|/VS/ftComputing2004/zip/ccfish30.zip

C/C++ Corner

The InterfacePanel is an separate tool for controlling the
Interface. Especially it can be used for testing the model
connections and to give the model a proper standing after a
program abort. The InterfacePanel should be the first
program after installation to control the interface to work
fine. The InterfacePanel comes with umFish30.ZIP.

Model Programs

AmpelThread
: Operating traffic lights (pedestrians) on an Intelligent
Interface with extension module. Operating the car and the
pedestrian lights in separate threads. C++Builder4 Win
Program.

file:///C|/VS/ftComputing2004/ccppe.htm (2 von 3) [10.08.2004 20:42:07]

file:///C|/VS/ftComputing2004/zip/umfish30.zip

C/C++ Corner

 Stamping
machine : Operationg the model Stamping Machine with
Feeder (51 663) C++Builder4 Win Programm.

RobStamping : Feeding the Stamping Machine 51 663 with
an Industry Robot. Feeding runs simoultaneously in its own
thread. C++Builder Win Program.

The sources are contained in cb4Model.ZIP.

Details / Notes

● Notes for programming with Threads
● Notes to umFish30.DLL

Last Update : 10.08.2004

file:///C|/VS/ftComputing2004/ccppe.htm (3 von 3) [10.08.2004 20:42:07]

file:///C|/VS/ftComputing2004/stanze.htm
file:///C|/VS/ftComputing2004/zip/cb4model.zip

HelloFish

HelloFish

ftComputing : Programme für die fischertechnik-Interfaces und -
konstruktionskästen

NEU Computing DLLs Modelle Downloads English Pages

ftComputing.de

Home
Back

Sitemap
Index
Links
Impressum

Mail

HelloFish for umFish30 cs
style

The following HelloFish version is designed for
use with VC++ 6.0

Setting up the VC++ Project

Easiest way : copy the whole ccFish30.ZIP in
a new directory.

Some more details for a new VC++ 6.0
console project :

● New Workspace : Console
● Be sure umFish30.DLL can be accessed

to be situated in directory \Debug or
\WinNT\System32

● Add to the project : umFishVC.h,
umFish30.lib, umFish30VC.cpp

● Compile (F7)

Connect the Interface

The interface is suggested to be on COM2. In
other cas change csOpenInterface(2, 1,
0, 0); to csInterface(1, 1, 0, 0); for
connection with COM1.

The HelloFish expects 3 lamps on M1 to M3
and an switch on E1.

file:///C|/VS/ftComputing2004/ccfirste.htm (1 von 4) [10.08.2004 20:42:18]

file:///C|/VS/ftComputing2004/fishneu.htm
file:///C|/VS/ftComputing2004/compute.htm
file:///C|/VS/ftComputing2004/fishdlls.htm
file:///C|/VS/ftComputing2004/modelle.htm
file:///C|/VS/ftComputing2004/download.htm
file:///C|/VS/ftComputing2004/sitemape.htm
file:///C|/VS/ftComputing2004/index.htm
file:///C|/VS/ftComputing2004/sitemap.htm
file:///C|/VS/ftComputing2004/indexx.htm
file:///C|/VS/ftComputing2004/links.htm
file:///C|/VS/ftComputing2004/urheber.htm
file:///C|/VS/ftComputing2004/urheber.htm#Mail
file:///C|/VS/ftComputing2004/zip/ccfish30.zip

HelloFish

The Source

The interesting parts of umFish30VC.cpp

#include <windows.h>
#include <iostream.h>
#include
"umFish30VC.h"

int ft;

void main() {
cout << "----
HelloFish started ----
" << endl;
cout << "umFish30 v"
<< csVersion() <<
endl;
ft =
csOpenInterface(2, 1,
0, 0);
if(ft == ftiError) {

 cout <<
"Interface Problem,
exit" << endl;

 return;
}
cout <<
"OpenInterface
succeeded" << endl;

cout << "--- Loop for
the three lamps on M1
to M3" << endl;
for(int j=1; j<=4;
j++)
{

 cout << "Round :
" << j << endl;

 csSetMotors(ft,
0);

 Sleep(300);
 for(int i=1;
i<=3; i++)
 {

csSetMotor(ft, i,
ftiOn);

 Sleep (500);
 }

}

csSetMotors(ft, 0);
cout << "END : Input
E1 = TRUE" << endl;
while(!csGetInput(ft,
1));
csCloseInterface(ft);
}

Explanations

file:///C|/VS/ftComputing2004/ccfirste.htm (2 von 4) [10.08.2004 20:42:18]

HelloFish

#include <windows.h> :
Standard include
#include <iostream.h>
: include for cout / cin
#include <iostream.h>
: umFish30.DLL
declarations.

int ft; : Handle to
umFish30

ft =
csOpenInterface(2, 1,
0, 0);
if(ft == ftiFehler) {

 cout <<
"Interface Problem,
exit" << endl;

 return;
}

Connection to the interface.
Parameters : COM2, with
AnalogScan, no Slave, Poll
default.
Returns the Handle to
umFish30. If it is == ftiError
the connection failed.

for(int j=1; j<=4;

j++) {...} Repeat
lamp switching 4 times

csSetMotors(ft, 0);
Sleep(300);
for(int i=1; i<=3;
i++)
{

 csSetMotor(ft, i,
ftiOn);

 Sleep (500);
}

Clear all M-Outputs (Lamps)
and pause for 0.3 secs.
Switch on lamps on M1 –
M2 – M3, pause after each
switch for 0.5 secs.

csSetMotors(ft, 0);
cout << "END : Input
E1 = TRUE" << endl;
while(!csGetInput(ft,
1));
csCloseInterface(ft);

Ending the program :
- Switch off all M-Outputs
– Write message
– Wait for E-Input E1 to be
true.
– Cancel the connection to
the interface.

Last Update : 10.08.2004

file:///C|/VS/ftComputing2004/ccfirste.htm (3 von 4) [10.08.2004 20:42:18]

HelloFish

file:///C|/VS/ftComputing2004/ccfirste.htm (4 von 4) [10.08.2004 20:42:18]

About Threads

About Threads

ftComputing : Programme für die fischertechnik-Interfaces und -
konstruktionskästen

NEU Computing DLLs Modelle Downloads English Pages

ftComputing.de

Home
Back

Sitemap
Index
Links
Impressum

Mail

General

umFish30.DLL separates the access to the interface resources
and the access of the application. Therefore umFish30 can be
used with threads. Separation is done by placing the interface
accesses in a special poll thread. The poll thread is controlled
by the MultiMediaTimer. The poll thread accesses interface in
fix intervals and places the belonging values in a special
(internal) control block (the ftiDCB). The application reads and
writes this ftiDCB asynchronously.

This technique anables different threads to access the interface
(if it is needed : with extension module) without problems. The
original access to the unique resource only happens once by
the one poll thread. The access to single E-Inputs / M-Outputs
can be done without additional work. Writing to all M-Outputs
with one function (SetMotors) requieres an masking to save
the M-Outputs of other threads.

The following examples refer to C++Builder programs with
thread classes inherited from VCL class TThread. Working
directly with Win-API functions is possible in the same manner,
there are some additional possibilties (look to Robot-Plant).

Program RobStamp

The Programs AmpelThread and RobStamp are constructed
with the same schema. AmpelThread is very much easier to
handle (there is robot to crash against the stamp) and should
be the first program to try. RobStamp is more interesting,
therefor it is discussed here. The actual program AmpelThread
uses the Intelligent Interface with extension module connected
to COM1, RobStamp uses COM1 and COM2 (corresponding to
the exsisting models).

frmThreadMain Der main thread containing the GUI and the
general control

ftR Instance of the class TFishFace for robot
control

file:///C|/VS/ftComputing2004/ccthreade.htm (1 von 4) [10.08.2004 20:42:27]

file:///C|/VS/ftComputing2004/fishneu.htm
file:///C|/VS/ftComputing2004/compute.htm
file:///C|/VS/ftComputing2004/fishdlls.htm
file:///C|/VS/ftComputing2004/modelle.htm
file:///C|/VS/ftComputing2004/download.htm
file:///C|/VS/ftComputing2004/sitemape.htm
file:///C|/VS/ftComputing2004/index.htm
file:///C|/VS/ftComputing2004/sitemap.htm
file:///C|/VS/ftComputing2004/indexx.htm
file:///C|/VS/ftComputing2004/links.htm
file:///C|/VS/ftComputing2004/urheber.htm
file:///C|/VS/ftComputing2004/urheber.htm#Mail
file:///C|/VS/ftComputing2004/ftplant.htm
file:///C|/VS/ftComputing2004/ccpp.htm#RobStanze

About Threads

ftS Instance of the class TFishFace stamp control

umFish30.DLL At the background : the Poll Thread

RobReady Event : Robot has place one piece
Standard Security, autoReset, not signaled

StanzeReady Event : Stamp can process the next piece
Standard Security, autoReset, not signaled

RobThread Thread for robot control

StanzThread Thread for stamp control

TfrmThreadMain::cmdActionClick

● Create ftR and ftS instances :
ftR = new TFishFace(false, false, 0);
ftS = new TFishFace(false, false, 0);

no AnalogScan, no Slave, with default PollInterval
● Connection to the interfaces :

ftR->OpenInterface("COM2"), false);
ftS->OPenInterface("COM1", false);

no interrupt by Application.ProcessMessages();
using a try - catch construct to detect open errors. Some
more are useful, but you always will hear it, if it crashes.

● Create the threads for Rob/Stamp
RobThread = new TRobThread(true);
StanzThread = new TStanzThread(true);

without starting them
● Thread end functions

RobThread->OnTerminate = RobEnde;
StanzThread->OnTerminate = StanzEnde;

● Starting the threads
RobThread->Suspended = false;
StanzThread->Suspended = false;

TRobThread::Execute

Working method of the threads.

● Drive to Home Position
ftR->SetMotor(mSaule, ftiLinks, 15, 999);
ftR->SetMotor(mArmV, ftiLinks, 15, 999);
ftR->SetMotor(mArmH, ftiLinks, 15, 999);
ftR->SetMotor(mGreifer, ftiLinks, 15, 999);
ftR->WaitForMotors(0, mSaule, mArmV, mArmH,
mGreifer);

The four motors of the robot are started simultanously
with full speed (15) to run for 999 impulses or until
reaching the end switch. The real maximum of impulses
may be 200, that means end switch will come first in any
case. WaitForMotors is waiting for all end switches are
true.

● Processing loop

file:///C|/VS/ftComputing2004/ccthreade.htm (2 von 4) [10.08.2004 20:42:27]

About Threads

do {} while(!Terminated)

runs until the thread geht from outside the thread an end
request.

● Inside the processing loop
frmThreadMain->lblStatus->Caption = "...."
Anzeige des aktuellen Status
ftR->SetMotor(...
ftR->SetMotor(...
ft->WaitForMotors(0, ...);

Processing the single steps : fetch the piece, go to
deposit place on the feeder.

● Wait for StanzeReady
while(!StanzeReady-WaitFor(100) == wrSignaled);

Deposit the piece on the feeder after signal
then signal RobReady.
RobReady->SetEvent();

Back to the store without a stop.
● If receiving a Terminate-Request

Drive to a resting positition.

TStanzThread::Execute

Working method of the threads, similar to TRobThread.

● Drive to Home Position
● Processing loop
● Inside the processing loop

At the beginning Wait for RobReady and there after
signal StanzeReady

● Continue the processing loop
● After getting a Terminate request

Clear the lamps.

TfrmThreadMain::cmdEndeClick

An artificial ending the stamp processing :

● Terminate request to robot
RobThread-Terminate();
StanzeReady-SetEvent();
RobThread-WaitFor();

The terminate request is not noticed by the thread,
because the thread is waiting for StanzeReady. That is
done by setting a special StanzeReady. After that the
RobThread will end the thread normaly.

● Terminate request to Stamp
analog robot
remember : one piece is requested for
ftS->WaitForLow(ePhotoV);
ftS->Pause(1234);

● Cleaning

file:///C|/VS/ftComputing2004/ccthreade.htm (3 von 4) [10.08.2004 20:42:27]

About Threads

Notes

Using threads : umFish30.DLL see above. VCL (Windows
GUI) mostly, sometimes it is better to use Synchronize(.....);
or the use of special components (e.g. TThreadListe ...).

Global Variables : frmThreadMain, ftR, ftS are some and very
nice to use and therefore nothing for OOP purists.
frmThreadMain comes from VCL, but ftR, ftS can be an
parameter for the thread constructor.

Last Update : 10.08.2004

file:///C|/VS/ftComputing2004/ccthreade.htm (4 von 4) [10.08.2004 20:42:27]

umFish30 Notes

umFish30 Notes

ftComputing : Programme für die fischertechnik-Interfaces und -
konstruktionskästen

NEU Computing DLLs Modelle Downloads English Pages

ftComputing.de

Home
Back

Sitemap
Index
Links
Impressum

Mail

General

umFish30.DLL is intended to support a
greater number of programming languages
with functions to operate the fischertechnik
interfaces. The operating system ist Windows
32bit.

There are to different interface for nearly the
same functions the um style with some few
functions and the access to an control block
(ftiDCB) for the properties. The cs style
interface has a greater number of functions
an only an handle to an internal ftiDCB which
can't access only via a function. This is used
by languages, which can't access structures
or have a special garbage collection which
can't accept a fix address for an control block
(like C # - CSharp).

To recognize (nearly) all changes on the E-
Inputs, they are polled in a sperate thread
under control of the MultiMediaTimer
CALLBACK routine. The application will read
the values of the E-Inputs (indirectly) from
the ftiDCB. This serves in addition to the
request of an refresh of the M-Output at least
every 0.3 sec.

The CALLBACK routine has some more
functions for counting all changes of the E-
Inputs, controlling the on times off an M-
Output (PWM - speed control) and the control

file:///C|/VS/ftComputing2004/ccfishe.htm (1 von 7) [10.08.2004 20:42:31]

file:///C|/VS/ftComputing2004/fishneu.htm
file:///C|/VS/ftComputing2004/compute.htm
file:///C|/VS/ftComputing2004/fishdlls.htm
file:///C|/VS/ftComputing2004/modelle.htm
file:///C|/VS/ftComputing2004/download.htm
file:///C|/VS/ftComputing2004/sitemape.htm
file:///C|/VS/ftComputing2004/index.htm
file:///C|/VS/ftComputing2004/sitemap.htm
file:///C|/VS/ftComputing2004/indexx.htm
file:///C|/VS/ftComputing2004/links.htm
file:///C|/VS/ftComputing2004/urheber.htm
file:///C|/VS/ftComputing2004/urheber.htm#Mail

umFish30 Notes

of an special impulse counter to stop an M-
Output after reaching the requested number
of impulses, same is done if the special end
switch is true.

The sources for umFish30.DLL are located in
umFish30.ZIP.

Structure

About names : Only function with the prefix
um or cs are external functions.

Access to the Interface

Connection to the Interface

The connection to the interface is done with
the function umOpenInterface. The function
itself goes more in details beside of interface
and operating system :

● umOpenInterface
❍ OpenInterfaceCOM : Intelligent

Interface
❍ OpenInterfaceLPT : Universal

(parallel) Interface (direct)
■ OpenInterfaceRT : access via

driver

umOpenInterface makes the default settings
for ftiDCB.

umCloseInterface closes the connection to
the interface (CloseInterfaceRT if accessed
via driver).

Ther is an control block ftiSave which
contains the data of the last opened ftiDCB.
With unload of umFish30.DLL by the
operating system in DllMain a "forgotten"
umCloseInterface of the application can be
done here.

file:///C|/VS/ftComputing2004/ccfishe.htm (2 von 7) [10.08.2004 20:42:31]

file:///C|/VS/ftComputing2004/zip/umfish30.zip

umFish30 Notes

Read of the E-Inputs - Refresh of the M-
Outputs

GetInputs is the central internal routine to do
this job :

● GetInputs
❍ GetInputsCOM1 : Intelligent

Interface only
❍ GetInputsCOM2 : with extension

module
❍ GetInputsRT : via driver
❍ GetInputsLPT : direct access

GetInputs first transfers ftiDCB.OutputStatus
and than reads the values of all E-Inputs to
ftiDCB.InputStatus.

Read of the Analog-Inputs

GetAnalog is the central internal routine to do
this job :

● GetAnalog
❍ GetAnalogCOM1 : Intelligent

Interface only
❍ GetAnalogCOM2 : with extension

module
❍ GetAnalogRT : via driver
❍ GetAnalogLPT : direct access

GetAnalog fills ftiDCB.Analogs[] and
Intelligent Interface only, the
ftiDCB.InputStatus.

Polling the Interface

The olling of the interface is controlled by the
MultiMediaTimer, it is done with the
CALLBACK-Routine PollInterface. At the
beginning of the routine the parameter
DWORD DCB is converted in a better usable
form :

file:///C|/VS/ftComputing2004/ccfishe.htm (3 von 7) [10.08.2004 20:42:31]

umFish30 Notes

ftiDCB *d = (ftiDCB*)DCB;

Testing of the E- and Analog-Inputs,
Refresh M-Outputs

save of the InputStatus : StatusAlt = d-
>InputStatus;

Set StatusNeu

● Intelligent Interface :
❍ GetInputs(*d); if AnalogScan = 0
❍ changing GetAnalog(*d, 0/1); if

AnalogScan = true
● Universal (parallel) Interface :

❍ GetInputs(*d);

❍ chhanging GetAnalog(*d, 0/1);
if AnalogScan = true

Determining StatusDelta : StatusDelta =
StatusAlt ^ StatusNeu;

Set ftiDCB : d->InputStatus = StatusNeu;

Loop for each M-Output

The following operations will be executes in a
loop for all available M-Outputs (Indices :
iMot, iEnd, iImpuls)

ImpulseCounter : Couting of the
Impulses on the E-Inputs

Done if NormalMode (MotMode, separate for
each M-Output)

if(StatusDelta & EMaske[.] > 0) d-
Counters[.]++;

Position : ImpulsCounter-Control

Done if RobMode (ModMode, separate for
each M-Output)

file:///C|/VS/ftComputing2004/ccfishe.htm (4 von 7) [10.08.2004 20:42:31]

umFish30 Notes

if(StatusDelta & EMaske[.] > 0) d-
Counters[.]--;

Braking if Counter < 6 : d->SpeedStatus =
...

Speed : Controling the On Time of the M-
Outputs

Done with Normal- and RobMode, if M-
Ausgang is on (SollDirection >0) and Speed
< Full and > off.

d->OutputStatus &= MAus[.]; M-Output
off
SpeedValue = ...; according the
OnOffTab[.] M-Output on / off.
d->OutputStatus |= AktDirection; new
OutputStatus

Application : Access to the
Controlblock ftiDCB

The fucntion with the prefix um or cs can be
used by the application alternatively. In many
cases they only copy values from or to the
ftiDCB. Function which access single E-Inputs
or M-Outputs mask the corresponding
ftiDCB.field. She are comfort functions. But
not easy to handle e.g. in the case of Speed-
Control. In this case the common routine
SetMotorAll is used.

A special thing is the function
GetAnalogDirect. Here the polling is stopped
uring reading the Analog value. Reason :
Accessing the EX/EY lasts more time then
accessing the other resources. Otherwise the
poll interval must be increased.

The um style functions need a parameter
ftiDCB, to be situated in the application.

file:///C|/VS/ftComputing2004/ccfishe.htm (5 von 7) [10.08.2004 20:42:31]

umFish30 Notes

The cs style function need handle to the
internal ftiDCB as parameter. Internally they
access the corresponding um styl functions or
access directly the ftiDCB.

csOpenInterface(Ex) is called without handle.
It returns a handle to be used with the
following functions. As parameter some
ftiDCB values are in use.

Details

MultiMediaTimer

The MultiMediaTimer calls at fixed time
intervals CALLBACK routine PollInterface. He
is started in umOpenInterface :

Interface.FID = timeSetEvent(

 Interface.PollInterval, // Time
interval
 0, // with older
systems :
 // max value
for that system
 PollInterface, // Address of
the CALLBACK routine
 DWORD(&Interface), // address of
the ftiDCB as DWORD
 TIME_PERIODIC); // Periodic
call

The CALLBACK-Routine uses the following
parameters :

void CALLBACK PollInterface(UINT
wTimerID, UINT msg, DWORD DCB, DWORD
dw1, DWORD DW2)

The most interesting parameter is DWORD
DCB, which is copied to an ftiDCB pointer on
the beginning of the routine.

file:///C|/VS/ftComputing2004/ccfishe.htm (6 von 7) [10.08.2004 20:42:31]

umFish30 Notes

ftiDCB *d = (ftiDCB+)DCB;

umCloseInterface cancels the polling :

if(Interface.FID != 0)
timeKillEvent(Interface.FID);

Because of the CALLBACK routine runs in its
own thread, a reliable cancel of the
MultiMediaTimer is important (see also
umCloseInterface).

Last Update : 10.08.2004

file:///C|/VS/ftComputing2004/ccfishe.htm (7 von 7) [10.08.2004 20:42:31]

	Lokale Festplatte
	C/C++ Corner
	HelloFish
	About Threads
	umFish30 Notes

